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The FDTD method is obtained by discretizing the differential equations that govern the under-
lying system. Using a Cartesian grid, the method provides an exceedingly simple way in which
to express future fields (i.e., unknown fields) in terms of past fields (known fields). For propaga-
tion in a homogeneous region, the traditional FDTD method is accurate to second-order—that is,
doubling the number of grid points per wavelength reduces inherent numerical errors by a factor
of four.

The behavior of fields and accuracy of the FDTD method at material interfaces are much more
complicated than in a homogeneous region. We previously derived exact expressions describing
the behavior of plane waves at planar boundaries [1,2]. Additionally we have examined and devel-
oped ways to minimize the errors associated with the “stairstep approximation” which is inherent
when modeling continuously varying surfaces in the FDTD method [3-8]. The work most recently
published in The Journal of the Acoustical Society of America showed how employing a simple
modification of the equations used to updated the fields adjacent to a rigid boundary could signifi-
cantly improve the accuracy of the simulation [8]. ‘

We continued to explore several new implementations of the FDTD method (proposed by oth-
ers) which seek to minimize dispersive and anisotropic errors inherent in all 2- and 3-D FDTD
schemes. Our comparisons provide insight into the techniques that are not easily garnered from the
publications in which they were originally presented. Some of this work appeared in IEEE Trans-
actions on Microwave Theory and Techniques [9] and was presented at the 2002 URSI/Antennas
and Propagation Symposium [10]. Notably, we demonstrated that many of the wavelet-based
schemes, which have attracted some advocates, are not superior to an FDTD scheme that uses
the same spatial stencil and the same “computational effort” (i.e., operations per a given temporal
advancement of the fields). We have further expanded on this work in a recent publication [11].

Our investigations of the discretized worlds of FDTD methods have led us to a better under-
standing of numeric artifacts associated with resonances and to ways of alleviating these artifacts.
Part of this work was presented as an invited talk in a special session organized by Prof. Allen
Taflove (one of the co-founders of the FDTD method) [12]. This work is further described in a pa-
per which has recently appeared in IEEE Transactions on Antennas and Propagation [13]. In that
work we show how the anisotropic dispersion inherent in the traditional “Yee” FDTD algorithm
can cause rather bizarre behavior in the resonant modes of a canonical resonator. Modes which are
degenerate in the continuous (or “real”) world can split into multiple modes. On the other hand,
modes which are distinct in the continuous world may be degenerate in the discrete FDTD world.
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Additionally, even modes that are not split or recombined in some spurious manner in the FDTD
world can nevertheless be shifted from the true resonant frequency that pertains in the continuous
world. Our work provides a way to quantify this behavior exactly without ever needing to perform
an FDTD simulation.

Given this understanding of the traditional FDTD technique, we were motivated to explore a
technique which was more isotropic than the traditional FDTD technique. Thus, we developed
a variation of the promising FDTD scheme proposed by Eric Forgy (IEEE Transactions on An-
tennas and Propagation, 50(7):983-996, 2002). This algorithm suffers much less grid dispersion
and anisotropy than more traditional FDTD formulations but still retains the local nature of the
standard update equations. The acoustic implementation of this algorithm is described in a paper
was published in the Journal of Computational Acoustics [14].

A recent publication by John Pendry (Phys. Rev. Lett., 85:3966, 2000) which described the use
of backward-wave (BW) materials to make a “perfect lens” has received considerable attention.
BW materials are dispersive materials whose direction of phase propagation is antiparallel to the
direction of power flow. BW materials can exist in both acoustic and electromagnetic systems.
BW materials belong to the class of materials know as “metamaterials” since they do not occur in
nature (i.e., they must be manufactured). There is great interest in metamaterials since they can
have interesting and useful properties not found in natural materials. Our initial attempts to model
BW materials using the FDTD technique were not consistent with those one would expect from
an initial inspection of the theory. Eventually we discovered that the dual, offset grids employed
in the FDTD method (i.e., the dual pressure and velocity grids or the dual electric and magnetic
field grids) can introduce significant numeric artifacts when modeling BW materials. The offset in
the grids can introduce a boundary layer that has the material properties of neither the BW mate-
rial nor the surrounding medium. Our investigations were presented in an invited talk at the 2002
URSYV/Antennas and Propagation Symposium [15] and in a paper which was published in Physi-
cal Review Letters B [16]. These publications focused on the behavior of fields in the continuous
world when a BW material has a small boundary layer. A recent publication in IEEE Transactions
on Antennas and Propagation described specific implementation issues concerned with modeling
BW materials using the FDTD method [17]. It was shown that the Pseudospectral Time-Domain
(PSTD) method, which employs a collocated grid and uses discrete Fourier transforms to calcu-
late spatial derivatives, may provide superior results to the FDTD method when modeling these
materials.

The Yee FDTD algorithm can provide exact solutions to one-dimensional problems when op-
erated at the so-called magic time step (i.e., when the spatial step size is equal to the speed of
light times the temporal step size). Here “exact” is taken to mean the field propagates without
dispersion error or other numeric artifacts beyond those which are dictated by the finite precision
of the computer. Unfortunately there is no magic time step in higher dimensions. However we
have recently developed a theoretical framework for multi-dimensional algorithms that have the
same exact properties as the one-dimensional Yee algorithm when operated at a particular time
step. The proposed technique uses vector operators which, instead of being defined at a point
such as with the usual gradient, divergence, and curl operators, are defined over spheres. Due to
their inherent symmetry, these spatial operators have the same properties in all directions. With



a judicious choice of the temporal step size the temporal errors can cancel the spatial errors and
the algorithm is exact. However, although the framework for the algorithm has been developed,
no practical (i.e., computationally efficient) algorithm has yet been developed. It should also be
noted that the method is only theoretically exact on an infinite grid—a finite grid will introduce
some inherent error but that error will be smaller than traditional FDTD techniques. Nevertheless
proof-of-concept implementations of the algorithm (which are quite computationally expensive)
have been used to demonstrate the validity of the technique and the improvements the algorithm
can provide over other FDTD implementations. The algorithm also has interesting properties such
as unconditional stability for an arbitrary temporal step size. Some of our work on this algorithm
was presented as an invited talk at the 2003 URSI/Antennas and Propagation Symposium [18].
This work is further described in a publication in Journal of Computational Physics [19] and a
Ph.D. dissertation (the author of which was partially supported under this grant) [20].

The understanding we have obtained of the FDTD method has provided a complete quantifica-
tion of the way in which plane waves propagate in the discrete FDTD world. Using this knowledge
we were able to construct an enhancement to the total-field/scattered-field boundary, which is a
boundary used to introduce field into the FDTD grid. This enhancement, which is nominally ex-
act, can provide an enormous improvement over the traditional implementation (better than a 100
dB reduction in errors in many situations). This work is described in a paper published in IEEE
Transactions on Antennas and Propagation [21]. Additionally Prof. Taflove invited the PI to con-
tribute a section to the 2005 edition of his FDTD book [22] which has come to be regarded as the
authoritative source for FDTD-related information.

Throughout the grant period we maintained a Web site, www . £dtd. org, that seeks to list all
archival publications related to the FDTD method. This site solicits input, in the form of comments
posted about work appearing in the archival literature, from the entire community interested in the
FDTD method (whether applied to acoustics, electromagnetics, or solid mechanics). We have also
made code available there which can be used to solve various propagation problems.
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